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Abstract: - In the present paper, we have studied the dynamics of coupled chaotic Bonhoeffer – van der Pol (BvP) 
electrical oscillators. In the case of series connection and bidirectional coupling via linear resistor, as the coupling 
strength varies, the chaotic states are driven to periodic states. In the case of ring-type connection, synchronization 
is observed in the case that the voltage driven BvP oscillator have different circuit parameters than the two identical 
current-driven BvP oscillators. The Bonhoeffer – van der Pol (BvP) electrical nonlinear oscillators simulate neuron 
cells and in this case the linear coupling resistors act as electric synapses. These synapses varying their resistance 
control the dynamics of the neuron cells, from chaotic to periodic states. 
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1 Introduction 
As the understanding of chaotic behavior has been 
deepend, a significant interest in the problem of 
controlling chaotic dynamics of nonlinear systems 
has been observed [1-5]. 

After the pioneering work of Ott, Grebogi and 
Yorke [6], several algorithms have been developed to 
achieve control of chaotic behavior in nonlinear 
dynamical systems. Patidar et al. [7], have shown, 
that in the case of two bidirectionally coupled 
nonlinear oscillators of the same kind, one periodic 
and one chaotic, chaotic behavior is converted into 
the desired periodic behavior, as the coupling factor 
is varied, while Kyprianidis et al. [8] have shown that 
chaotic behavior is converted into the desired 
periodic behavior, in both coupled schemes, 
unidirectional and bidirectional.   

The notion of chaotic synchronization was 
introduced by Pecora and Carroll [9] in 1990. A wide 
range of research activity, in a variety of complex 
physical, chemical and biological systems has been 
stimulated, ever since [10-13]. In particular, the topic 

of synchronization of coupled chaotic electronic 
circuits has been studied intensively [14-15]. 

Chaos control and synchronization have important 
potential applications [16-18] in several scientific areas 
including biology [19], medicine [20], electric circuits 
[21-27], laser technology [28-30], secure 
communication [31-34], and neuroscience [35-37] to 
name but a few.  

The system of two FitzHugh-Nagumo cells coupled 
with gap junctions is the simplest possible system 
simulating two coupled neuron cells via an electric 
synapse [38]. As introduced by Fitzhugh [39], the BvP 
model for a spiking neuron is a two dimensional 
reduction of the Hodgkin – Huxley equations [40]. A 
qualitative description of the single neuron activity is 
given, according to FitzHugh, by the system of coupled 
nonlinear differential equations:  
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Fig.1. The electronic simulator of the BvP model 
proposed by Nagumo et al. [41]. 
 

The variable x describes the potential difference 
across the neural membrane and y can be considered 
as a combination of the different ion channel 
conductivities, present in the Hodgkin-Huxley model. 
The control parameter z of the BvP system describes 
the intensity of the stimulating current. Nagumo et al. 
[41] proposed an electronic simulator of the BvP 
model of FitzHugh using a tunnel diode as the 
nonlinear element (Fig.1). 

The BvP model of nonlinear differential 
equations (1) can be simulated by a different 
nonlinear electric circuit (Fig.2), using a nonlinear 
resistor with a smooth cubic i-v characteristic.   

 
Fig.2. The electronic simulator of the BvP model of 
FitzHugh, proposed in the present paper. 

 
 

2 Analysis of the New BvP Model 
The smooth cubic i-v characteristic of the nonlinear 
resistor of the circuit of Fig.2 is given by the 
following equation: 
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where ρ and 0V  are normalization parameters. From 
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The nonlinear differential equations (7) and (8) are 
the FitzHugh equations (1).  
 
 
2.1  The BvP model proposed by Rajasekar and 
Lakshmanan 
Rajasekar and Lakshmanan proposed a slightly 
different form of BvP oscillator  [42,43] given by the 
following state equations: 
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The study of Eqs.(10) revealed the existence of 

chaotic behavior, following the period doubling route 
to chaos, and devil’s staircases. The nonlinear 
differential equations (10) can be also simulated by a 
nonlinear electric circuit, using a nonlinear resistor 
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with a smooth cubic i-v characteristic. The nonlinear 
electric circuit is shown in Fig.3. The smooth cubic  
i-v characteristic of the nonlinear resistor of the 
circuit of Fig.3 is given by the same equation, as 
before, 
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where ρ and 0V  are normalization parameters. From 

Kirchhoff’s laws: 
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Fig.3. The nonlinear electric circuit simulating 
Eqs.(10). 

 
 

The topology of the circuits of Fig.2 and Fig.3 is 
exactly the same, proving the equivalence of 
equations (1) and (10). 
 
 

3 BvP Electrical Oscillator Driven by a  
     Voltage Source 
In the circuits of Figures 2 and 3, the driving source is a 
current source. But in most cases, circuits are driven by 
voltage sources. In this section, we will study the 
circuit of Fig.3 driven by a voltage source, as it is 
shown in Fig.4.  

The smooth cubic i-v characteristic of the nonlinear 
resistor of the circuit of Fig.4 remains the same as 
before, 
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and applying Kirhhoff’s laws  we have: 
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Fig.4. The equivalent circuit of BvP oscillator’s state 
equations by Rajasekar and Lakshmanan driven by a 
voltage source. 
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Then the normalized state equations are the 
following. 
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In the general case, the driving voltage source 

has the following form: 
   

S S 0υ B B cos2πft     (22) 
 
including a DC plus a sinusoidal term of frequency f, 
so: 
 

S 0 Nu U U cos 2πf τ     (23) 
 
where the normalized frequency fN will be fN = ρCf.  

As we can observe, this circuit driven by a 
voltage source has one additional circuit parameter, 
ε, in relation to the current driven circuits of  Figures 
2 and 3, which enriches the complexity of its 
dynamics.  
 
 
3.1   Dynamics of the circuit – Bifurcation 
diagrams 
We have studied the dynamics of the circuit keeping 
constant the following parameters: a = 0.7, b = 0.8,      
c = 0.1, fN = 0.160 and US = 0.0. The birurcation 
diagrams, y vs. U0, for different values of factor ε, 
are shown in the following figures 5-8 and 
antimonotonicity, forward and reverse period 
doubling sequences, is observed [44-47].  
 
 
4   The Coupled System 
By coupling the circuits of Figures 3 and 4 via a 
linear resistor, we get the system of Fig.9. The two 
sub-circuits have identical circuit elements, L, R, C, 
E and RN . 

 
Fig.5. Bifurcation diagram, y vs. U0, for ε = 0.150. 

 
 

 
Fig.6. Bifurcation diagram, y vs. U0, for ε = 0.175. 

 
 

 
Fig.7. Bifurcation diagram, y vs. U0, for ε = 0.180. 
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Fig.8. Bifurcation diagram, y vs. U0, for ε = 0.190.  
 
The normalized state equations of the system are: 
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while ξ is the coupling factor of the system. By 
choosing a = 0.7, b = 0.8, c = 0.1, fN = 0.160,             
ε = 0.150, US = 0.0 and U0 = 0.9, the first sub-circuit 
operates in a chaotic mode (see Fig.5). 
  
 
 
 
 
 

 
 

 
Fig.10. Bifurcation diagram (y2 – y1) vs. ξ presenting 
the dynamics of the coupled system of Fig.9. 
 

By increasing the value of coupling factor, the 
system, starting from a chaotic state, undergoes a 
reverse period doubling and finally is locked in a 
period-1 state [7, 8] (see Fig.10). 

Considering that the linear coupling resistor plays 
the role of an electric synapse, we conclude that it can 
control the chaotic dynamic state of the system. 

By coupling one more sub-circuit, we get the 
system of Fig.11. The bifurcation diagrams vs. the 
coupling factor are shown in Figs.12-14. The electric 
synapses control the chaotic behavior, as in the 
previous case, and lock the system in a periodic state. 
 
 

4 The Coupled System in a Ring 
Connection 

The coupled system in a ring connection is shown in 
Fig.15. The voltage driven oscillator is 2-way coupled 
to current driven oscillators forming a ring connection 
via linear resisting coupling [15,48,49]. All three 
oscillators have the same circuit parameters. 
 
 
 
 

 
 
 
 
 
 
 
 

Fig.9. The bidirectional coupled system via the linear resistor.
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Fig.11. The coupled system consisting of three sub-circuits. 

 

 
Fig.12. Bifurcation diagram  2 1y y  vs. ξ 

presenting the dynamics of the coupled system of 
Fig.11. 
 

 
Fig.13. Bifurcation diagram  3 1y y  vs. ξ 

presenting the dynamics of the coupled system of 
Fig.11. 
 
 
 

 
Fig.14. Bifurcation diagram  3 2y y  vs. ξ presenting 

the dynamics of the coupled system of Fig.11. 
  
 

 
Fig.15. The coupled system in a ring connection. 
 
 
 

WSEAS TRANSACTIONS on SYSTEMS I. M. Kyprianidis, V. Papachristou, I. N. Stouboulos, Ch. K. Volos

E-ISSN: 2224-2678 521 Issue 9, Volume 11, September 2012



The υ-i characteristics of the nonlinear resistors are 
given by the following relationship. 
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Using Kirchhoff’s laws the state equations of the 

system are the following: 
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The normalized state equations of the system are: 
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while ξ is the coupling factor. Keeping the same values 
of the system parameters, and increasing the value of 
the coupling factor, the bifurcation diagram of Fig.16 
shows the change in dynamics of the voltage driven 
sub-circuit. The state variables of this sub-circuit, 
follow a reverse period doubling route from chaos to a 
period-1 state, while the state variables x2, y2, x3 and y3 
have different dynamics. They, very fast, converge to 
an equilibrium point Q(xQ, yQ) for every value of the 
coupling factor. For ξ = 0,001 we have Q(xQ, yQ) =      
(-1,198, -0,624). 
 

 
Fig.16. Bifurcation diagram 1y  vs. ξ presenting the 

dynamics of the voltage driven sub-circuit of Fig.15 
 
 

 
Fig. 17. The waveform of 2y  for ξ 0.001 . 
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The waveforms of 2y  and 3y  as well as their 

difference (y2 – y3) are shown in the figures 17-19, 
for ξ = 0.001, when the voltage driven sub-circuit is 
in a chaotic state.  
 

 Fig. 18. The waveform of 3y  for ξ = 0.001. 

 
 

 
Fig. 19. The waveform of  32y y  for ξ = 0.001. 

  
 
4.1 Chaotic Synchronization 
In order to increase the complexity of the system, we 
have changed the circuit parameters a, b and c, which 
are no more identical for all the sub-circuits, while all 
the other parameters keep the same values. In this 
case, the state equations of the system (29) take the 
following form: 
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For the following values of the circuit parameters 

a1 = 0.7, b1 = 0.8, c1 = 0.1, a2 = a3 =0.0, b2 = b3 = 1.0, c2 
= c3 = 0.425, the bifurcation diagram (x2 – x3) vs. ξ is 
shown in Fig.20. For ξ > 0.000012 complete chaotic 
synchronization between the current driven sub-circuits 
is observed, while there are not synchronization 
phenomena between the voltage driven sub-circuit and 
any current driven sub-circuit (Fig.21). We have to 
notice, that chaotic synchronization between the current 
driven sub-circuits is observed because these two 
circuits are identical. If they are not identical, 
synchronization is not observed. 
 

 
Fig.20. The bifurcation diagram (x2 – x3) vs. ξ, in the 
case of different a, b, c parameters of the sub-circuits. 
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Fig.21. The bifurcation diagram (x2 – x1) vs. ξ, in the 
case of different a, b, c parameters of the sub-circuits. 
 
 

5 Conclusions 
In this paper we have introduced a Bonhoeffer – van 
der Pol (BvP) electrical oscillator driven by a 
sinusoidal voltage source and have studied coupled 
schemes consisting of Bonhoeffer – van der Pol 
electrical oscillators, which simulate the behavior of 
coupled neurons. The neurons are coupled via 
electric synapses, and the linear resistors play this 
role in the coupled system. In the case of 
bidirectional coupling, these synapses varying their 
resistance controlling the dynamics of the neuron 
cells, from chaotic to periodic states, as it is shown 
by the bifurcation diagrams. In the case of 
unidirectional coupling, the dynamics of the coupled 
system remains chaotic, as the coupling factor is 
varied. Periodic states are not observed. 

In the case of ring-type connection, 
synchronization is observed in the case that the 
voltage driven BvP oscillator have different circuit 
parameters than the two identical current-driven BvP 
oscillators. The system has very interesting dynamics 
and its study is in progress. 
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